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Abstract

A parametric study of the buckling behavior of infinitely long symmetrically lam-
inated anisotropic plates that are subjected to linearly varying edge loads, uniform
shear loads, or combinations of these loads is presented. The study focuses on the
effects of the shape of linearly varying edge load distribution, plate orthotropy, and
plate flexural anisotropy on plate buckling behavior. In addition, the study examines
the interaction of linearly varying edge loads and uniform shear loads with plate
[flexural anisotropy and orthotropy. Results obtained by using a special purpose non-
dimensional analysis that is well suited for parametric studies of clamped and simply
supported plates are presented for 9], thin graphite-epoxy laminates that are repre-
sentative of spacecraft structural components. Also, numerous generic buckling-
design charts are presented for a wide range of nondimensional parameters that are
applicable to a broad class of laminate constructions. These charts show explicitly the
effects of flexural orthotropy and flexural anisotropy on plate buckling behavior for
linearly varying edge loads, uniform shear loads, or combinations of these loads. The
most important finding of the present study is that specially orthotropic and flexurally
anisotropic plates that are subjected to an axial edge load distribution that is tension
dominated can support shear loads that are larger in magnitude than the shear buck-

ling load.

Introduction

Buckling behavior of laminated plates that are sub-
jected to combined loads is an important consideration in
the preliminary design of aircraft and launch vehicles.
The sizing of many structural subcomponents of these
vehicles is often determined by stability constraints. One
subcomponent that is of practical importance in struc-
tural design is the long rectangular plate. These plates
commonly appear as subcomponents of stiffened panels
used for wing structures and as semimonocoque shell
segments used for fuselage and launch vehicle structures.
Buckling results for infinitely long plates are important
because they often provide a useful conservative estimate
of the behavior of finite-length rectangular plates, and
they provide information that is useful in explaining the
behavior of these finite-length plates. Moreover, knowl-
edge of the behavior of infinitely long plates can provide
insight into the buckling behavior of more complex
structures such as stiffened panels.

An important type of long plate that appears as a
subcomponent of advanced composite structures is the
symmetrically laminated plate. In the present paper, the
term “symmetrically laminated” refers to plates in which
every lamina above the plate midplane has a correspond-
ing lamina located at the same distance below the plate
midplane, with the same thickness, material properties,
and fiber orientation. Symmetrically laminated plates
remain flat during the manufacturing process and exhibit
flat prebuckling deformation states. These characteristics
and the amenability of these plates to structural tailoring
provide symmetrically laminated plates with a significant
potential for reducing structural weight of aircraft and
launch vehicles. Thus, understanding the buckling

behavior of symmetrically laminated plates is an impor-
tant part of the search for ways to exploit plate orthotropy
and anisotropy to reduce structural weight.

In many practical cases, symmetrically laminated
plates exhibit specially orthotropic behavior. However,
in some cases, such as [*45]; laminates, these plates
exhibit anisotropy in the form of material-induced cou-
pling between pure bending and twisting deformations.
This coupling is referred to herein as flexural anisotropy,
and it generally yields buckling modes that are skewed in
appearance. The effects of flexural orthotropy and flex-
ural anisotropy on the buckling behavior of long rectan-
gular plates that are subjected to single and combined
loading conditions are becoming better understood. For
example, recent in-depth parametric studies that show
the effects of anisotropy on the buckling behavior of long
plates that are subjected to compression, shear, pure in-
plane bending, and various combinations of these loads
have been presented in references 1 through 5. The
results presented in these references indicate that the
importance of flexural anisotropy on the buckling resis-
tance of long plates varies with the magnitude and type
of the combined loading condition. However, none of
these studies supply results for plates loaded by uniform
shear and a general linear distribution of axial load across
the plate width. Both the uniform axial compression and
the pure in-plane bending loads are special cases of the
general linear distribution of axial edge loads. Results for
this class of loadings are useful in the design of aircraft
spar webs and panels that are located off the neutral axis
of a fuselage or launch vehicle that is subjected to overall
bending and torsion loads. Moreover, the importance of
neglecting flexural anisotropy in a buckling analysis is
practically unknown for this class of loadings.



One objective of the present paper is to present buck-
ling results for specially orthotropic plates that are sub-
jected to uniform shear, a general linear distribution of
axial load across the plate width, and combinations of
these loads in terms of useful nondimensional design
parameters. Other objectives are to identify the effects of
flexural anisotropy on the buckling behavior of long
symmetrically laminated plates that are subjected to the
same loading conditions and to present some previously
unknown results that show some unusual behavior.
Results are presented for plates with the two long edges
clamped or simply supported and that are free to move in
their plane. Several generic buckling-design curves that
are applicable to a wide range of laminate constructions
are also presented in terms of the nondimensional param-
eters described in references 1, 2, 5, and 6.
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N = y/b,&=x/A nondimensional plate

coordinates
0 fiber angle of a lamina (see
fig. 1), deg
A half-wavelength of buckling
mode (see fig. 1), in.
Ab buckle aspect ratio (see fig. 1)
Via lamina major Poisson’s ratio
®, (M) basis functions used to represent

buckling mode (see eq. (22))

Analysis Description

In preparing generic design charts for buckling of a
single flat plate, a special purpose analysis is often pre-
ferred over a general purpose analysis code, such as a
finite element code, because of the cost and effort usually
involved in generating a large number of results with a
general purpose code. The results presented herein were
obtained by using such a special purpose analysis. The
analysis details are lengthy; hence, only a brief descrip-
tion of the analysis is presented.

Symmetrically laminated plates can have many dif-
ferent constructions because of the wide variety of mate-
rial systems, fiber orientations, and stacking sequences
that can be used to construct a laminate. A way of coping
with the vast diversity of laminate constructions is to use
convenient nondimensional parameters. The buckling
analysis used in the present paper is based on classical
plate theory and the classical Rayleigh-Ritz method and
was derived explicitly in terms of the nondimensional
parameters defined in references 1, 2, 5, and 6. This
approach was motivated by the need for generic (inde-
pendent of laminate construction) parametric results for
composite plate buckling behavior that are expressed in
terms of the minimum number of independent parame-
ters needed to fully characterize the behavior and that
indicate the overall trends and sensitivity of the results to
changes in the parameters. The nondimensional parame-
ters used in the present paper are given by
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where b is the plate width and A is the half-wavelength of
the buckle pattern of an infinitely long plate (see fig. 1).
The subscripted D-terms are the bending stiffnesses of
classical laminated plate theory. The parameters o_ and
B characterize the flexural orthotropy, and the parameters
v and & characterize the flexural anisotropy.

The loading combinations included in the analysis
are uniform transverse tension or compression, uniform
shear, and a general linear distribution of axial load
across the plate width, as depicted in figure 1. The longi-
tudinal stress resultant N is partitioned in the analysis
into a uniform tension or compression part and a linearly
varying part corresponding to eccentric in-plane bending
loads. This partitioning is given by

N,.=N_—-N,le;+(g;—gym] )

where N, . denotes the intensity of the constant-valued
tension or compression part of the load, and the term
containing N, defines the intensity of the eccentric in-
plane bending load distribution. The symbols €, and g,
define the distribution of the in-plane bending load, and
the symbol 1 is the nondimensional coordinate given by
n = y/b (see fig. 1).

The analysis is based on a general formulation that
includes combined destabilizing loads that are propor-
tional to a positive-valued loading parameter p that is
increased until buckling occurs and independent subcriti-
cal combined loads that remain fixed at a specified load
level below the value of the buckling load. Herein, the
term “subcritical load” is defined as any load that does
not cause buckling to occur. In practice, the subcritical
loads are applied to a plate prior to the destabilizing
loads with an intensity below that which will cause the
plate to buckle. Then, with the subcritical loads fixed, the
destabilizing loads are applied by increasing the magni-
tude of the loading parameter until buckling occurs. This
approach permits certain types of combined load interac-
tion to be investigated in a direct and convenient manner.

The distinction between the destabilizing and sub-
critical loading systems is implemented in the buckling
analysis by partitioning the prebuckling stress resultants
as follows:
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where the stress resultants with the subscript 1 are the
destabilizing loads, and those with the subscript 2 are the
subcritical loads. The sign convention used herein for
positive values of these stress resultants is shown in
figure 1. In particular, positive values of the general lin-
ear edge stress distribution parameters Ny, Np,, €,
and €, correspond to compression loading. Negative
values of N b1 and N p2s OF negative values of either €
or €, yield linearly varying stress distributions that
include tension. The two normal stress resultants of the
system of destabilizing loads, N;l and N y1» are defined
as positive valued for compression loads. This conven-
tion results in positive eigenvalues being used to indicate
instability caused by uniform compression loads.

The buckling analysis includes several nondimen-
sional stress resultants associated with equations (6)
through (9). These dimensionless stress resultants are
given by

ny = —I—— (10)
n, =X an
_—"Yf_m (12)
ny; = —_— 13)

where the subscript j takes on the values of 1 and 2. In

addition, the destabilizing loads are expressed in terms of
the loading parameter p in the analysis by

nS, = Lp (14)
ny = Lyp (15)
nyt = Lyp (16)
nyy = Lyp am

where L, through L, are load factors that determine the
specific form (relative magnitude of the load compo-
nents) of a given system of destabilizing loads. Typi-
cally, the dominant load factor is assigned a value of 1,
and all others are given as positive or negative fractions.
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Nondimensional buckling coefficients used herein
are given by the values of the dimensionless stress result-
ants of the system of destabilizing loads at the onset of
buckling; that is,
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where i)cr is the magnitude of the loading parameter
at buckling. Positive values of the coefficients K and
K y correspond to uniform compression loads, and the
coefficient K corresponds to uniform positive shear.
The direction of a positive shear stress resultant acting on
a plate is shown in figure 1. The coefficient K, corre-
sponds to the specific in-plane bending load distribution
defined by the selected values of the parameters £, and
£

The mathematical expression used in the variational
analysis to represent the general off-center and skewed
buckle pattern is given by

N
wa(&M) = Y (A, sin &+ B, cos nE)D, () (22)

m=1

where £ = x/A and | = y/b are nondimensional coor-
dinates, w,, is the out-of-plane displacement field, and
A, and B, are the unknown displacement amplitudes.
In accordance with the Rayleigh-Ritz method, the basis
functions @, (n) are required to satisfy the kinematic
boundary conditions on the plate edgesat 1 = 0 and 1.
For the simply supported plates, the basis functions used
in the analysis are given by

@, (n) = sin [mnn] (23)

for valuesof m=1, 2, 3, ..., N. Similarly, for the clamped
plates, the basis functions are given by

D, (M) = cos [(m—1)nn]-cos [(m+1)nn] (24)



For both boundary conditions, the two long edges of a
plate are free to move in the x-y plane.

Algebraic equations governing the buckling behav-
ior of infinitely long plates are obtained by substituting
the series expansion for the buckling mode given by
equation (22) into the second variation of the total poten-
tial energy and then by computing the integrals appearing
in the second variation in closed form. The resulting
equations constitute a generalized eigenvalue problem
that depends on the aspect ratio of the buckle pattern A/b
(see fig. 1) and the nondimensional parameters and non-
dimensional stress resultants defined herein. The small-
est eigenvalue of the problem corresponds to buckling
and is found by specifying a value of A/b and by solving
the corresponding generalized cigenvalue problem for its
smallest eigenvalue. This process is repeated for succes-
sive values of A/b until the overall smallest eigenvalue
is found.

Results obtained by using the analysis described
herein for uniform compression, uniform shear, pure in-
plane bending (given by €, = —1 and €; = 1), and various
combinations of these loads have been compared with
other results for isotropic, orthotropic, and anisotropic
plates obtained by using other analysis methods. These
comparisons are discussed in references 1 and 2, and in
every case the results described herein were found to be
in good agreement with those obtained from other
analyses. Results obtained for isotropic and specially
orthotropic plates that are subjected to a general linear
distribution of axial load across the plate width were
also compared with results presented in references 7
through 13. In every case, the agreement was good.

Results and Discussion

Results are presented for clamped and simply sup-
ported plates loaded by a general linear distribution of
axial load across the plate width, uniform shear load, and
combinations of these loads. For convenience, plates
loaded by a general linear distribution of axial load
across the plate width are referred to herein as plates
loaded by linearly varying edge loads. To obtain the vari-
ous edge load distributions used herein, €; = 1 was speci-
fied and g, was varied. Sketches that show the linearly
varying edge loads for several values of g; are shown in
figure 2. For loading cases that involve shear, a distinc-
tion is made between positive and negative shear loads
whenever flexural anisotropy is present. A positive shear
load corresponds to the shear load shown in figure 1.
Although the analysis presented herein previously
includes the means for applying combined loads by using
subcritical loads, the combined loads considered in the
present paper were applied as primary destabilizing
loads.

Results are presented first for the familiar [+0];
angle-ply plates that are loaded by linearly varying edge
loads or by combined loads. (Several results for corre-
sponding [10]; angle-ply plates that are subjected to
uniform uniaxial compression, uniform shear, or pure
in-plane bending loads have been presented in refs. 1
and 2.) These thin laminates are representative of space-
craft structural components and are made of a typical
graphite-epoxy material with a longitudinal modulus
E; =127.8 GPa (18.5 X 10° psi), a transverse modulus
E; =11.0GPa (1.6 X 100 psi), an in-plane shear modulus
G2 = 5.7 GPa (0.832 x 10° psi), a major Poisson’s ratio
Vi, = 0.35, and a nominal ply thickness of 0.127 mm
(0.005 in.). Generic results are presented next, in terms of
the nondimensional parameters described herein, for
ranges of parameters that are applicable to a broad class
of laminate constructions. The term “generic” is used
herein to emphasize that these buckling results are very
general because they are presented in a form that is inde-
pendent of the details of laminate construction; i.e.,
stacking sequence and ply materials. The ranges of the
nondimensional parameters used herein are given by
0.1<B<30, 0£v<0.6, and 0<3<0.6. The results
presented in references 1 and 2 indicate that y= 8 = 0.6
corresponds to a highly anisotropic plate. For isotropic
plates, B = 1 and y = 8 = 0. Moreover, for symmetrically
laminated plates without flexural anisotropy, Y= 8 = 0.
(These plates are referred to herein as specially orthotro-
pic plates.) Values of these nondimensional parameters
that correspond to several practical laminates (and
several material systems) are given in references 1 and 2.

To simplify the presentation of the fundamental
generic behavioral trends, results are presented herein
only for plates in which Yy and 8 have equal values (e.g.,
[145]; laminates). However, these behavioral trends are
expected to be applicable to laminates with nearly equal
values of v and 6 such as a [+35/—15] laminate made of
the typical graphite-epoxy material described herein. For
this laminate, B = 1.95, y = 0.52, and & = 0.51. Further-
more, results showing the effects of a_, or equivalently

(D“/Dzz)m, on the buckling coefficients are not pre-
sented. References 1 and 2 have shown that variations in
this parameter affect the critical value of the buckle
aspect ratio A/b but not the buckling coefficient (i.e., the
buckling coefficient remains constant) of plates that are
subjected to uniform tension or compression loads, uni-
form shear loads, and pure in-plane bending loads. This
trend was found in the present study to be valid also for
the plates loaded by linearly varying edge loads and
uniform shear loads considered herein. For clarity, the
shear and in-plane bending buckling coefficients, defined
by equations (20) and (21), respectively, are expressed as

KS'y:S:O and Kbly:&:o when the generic results are
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described for plates in which flexural anisotropy is
neglected in the buckling calculations.

Plates Loaded by Linearly Varying Edge Loads
or Shear

Results are presented in figures 2 and 3 for simply
supported and clamped [+45], plates, respectively, that
are subjected to linearly varying edge loads that corre-
spond to values of g5 = -2, —1.5, -1, 0.5, 0, 0.5, and 1.
In these figures, the minimum value of the loading
parameter p, found by solving the generalized eigen-
value problem for a given value of A/b, is shown by the
solid lines for values of 0 <A/b <2 (flexural anisotropy
is included in the analysis). The overall minimum value
of the loading parameter for each curve is indicated by an
unfilled circle, and these minimum values of the loading
parameter correspond to the value of the buckling coeffi-
cient for each curve. The corresponding values of A/b
are the critical values of the buckle aspect ratio.

The results presented in figures 2 and 3 show the
effect of the load distribution shape and boundary condi-
tions on the buckling coefficient and the corresponding
critical value of A/b. As the amount of tension load in
the load distribution increases (g decreases), the buck-
ling coefficient increases substantially, and the critical
value of A/b decreases. Moreover, the results show that
the clamped plates exhibit larger buckling coefficients
and smaller critical values of A/b than corresponding
simply supported plates. As the amount of tension load in
a linearly varying edge load distribution increases, the
amount of the plate width that is in compression
decreases. As a result, the buckles appearing in the plate
are typically confined to the narrower compression
region. The width d of this narrower compression region
of a plate is obtained from the equation that defines
the corresponding neutral axis of the in-plane bending
load component (defined by N = 0); that is,
d = b/(1 ~g)) where gy < 0. For plates with large
negative values of g, the critical value of /b may be
much less than a value of 1. For these cases, a more accu-
rate expression of the critical buckle aspect ratio is given
by Md.

Results that indicate the effect of the edge load dis-
tribution shape on the buckling coefficients for simply
supported and clamped [£6], plates with 8 =0°, 30°, 45°,
60°, and 90° (see fig. 1) are shown in figure 4. The solid
and dashed lines correspond to buckling coefficients for
clamped and simply supported plates, respectively, in
which the flexural anisotropy is neglected in the analysis.
These results show that the clamped plates always have
higher buckling coefficients than the simply supported
plates and that the buckling coefficients for the clamped
plates are more sensitive to variations in the load
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distribution parameter &; (indicated by the slope of the
curves). The results also show very large increases in
buckling coefficient as the amount of tension in the edge
load distribution increases (g; decreases) for all values
of 8. For a given value of €, the largest buckling coeffi-
cient is exhibited by the plates with 6 = 45°, followed by
the plates with 8 = 30° and 60°, and then by the plates
with 8 = 0° and 90°. Moreover, the results indicate that
the plates with 6 = 30° and 60° have the same buckling
coefficients as do the plates with 8 = 0° and 90°.

The importance of neglecting the anisotropy in the
calculation of the buckling coefficients given in figure 4
for [10]; plates is indicated in figure 5. In figure 5, the
ratio of the anisotropic-plate buckling coefficient K, to
the corresponding specially orthotropic-plate buckling
coefficient K b"y: 520 is given as a function of the load

distribution parameter € and the fiber angle 0. The solid

and dashed lines shown in the figure correspond to
results for clamped and simply supported plates, respec-
tively. The results indicate that the simply supported
plates generally exhibit larger reductions in the buckling
coefficient ratio because of anisotropy and that the sim-
ply supported plates are more sensitive to the load distri-
bution parameter €, than are the clamped plates. In
particular, the results predict that the simply supported
plates are only slightly sensitive to variations in g, and
that the clamped plates exhibit practically no sensitivity
to variations in €). The largest reductions in the buckling
coefficient ratio are predicted for the plates with 8 = 45°,
followed by the plates with 6 = 60° and 6 = 30°, respec-
tively. The simply supported plates with 8 = 45° and with
€y =-2 and g; = 1 (uniform compression) have values of
approximately 0.76 and 0.74, respectively, for the buck-
ling coefficient ratio.

Generic effects of plate orthotrepy. Generic buck-
ling results for specially orthotropic (y = & = 0) simply
supported and clamped plates that are subjected to lin-
early varying edge loads are presented in figures 6
through 10. The solid and dashed lines in the figures cor-
respond to results for clamped and simply supported
plates, respectively. The results presented in figure 6
show the buckling coefficient as a function of the orthot-
ropy parameter 3 for selected values of the load distribu-
tion parameter €3 = —2, —1.5, and —1. Similar results are
presented in figure 7 for values of g5 = —0.5, 0, 0.5,
and 1. The results presented in figures 8 through 10 show
the buckling coefficient as a function of the load distribu-
tion parameter € for discrete values of the orthotropy
parameter 8 = 0.5, 1, 1.5, 2, 2.5, and 3. In figures 8
through 10, results are presented for —2 < g <1,
-1<g,<0, and 0 <gy< 1, respectively, because of the
large variation in the buckling coefficient with €.



The generic results presented in figures 6 through 10
show that the buckling coefficient increases substantially
as the orthotropy parameter [} increases. In contrast, the
buckling coefficient decreases substantially as the load
distribution parameter g increases and the amount of
compression in the load distribution increases. In addi-
tion, the results presented in figures 6 and 7 indicate that
the clamped plates are more sensitive to variations in the
orthotropy parameter B (indicated by the slope of the
curves) than the simply supported plates for the full
range of load distribution parameters considered. More-
over, the results presented in figures 8 through 10 indi-
cate that for a given value of B, the clamped plates are
typically more sensitive to variations in the load distribu-
tion parameter € than are the simply supported plates.

Some generic buckling results for specially orthotro-
pic simply supported and clamped shear-loaded plates
that have been presented in references 1, 2, and 5 are pre-
sented in figure 11 for completeness of the present study
and for convenience. The solid and dashed lines in the
figure show the buckling coefficient as a function of the
orthotropy parameter B for clamped and simply sup-
ported plates, respectively. The results indicate that the
shear buckling coefficient increases substantially as the
orthotropy parameter B increases and that the clamped
plates are typically more sensitive to variations in f than
are the simply supported plates. This trend for the shear-
loaded plates is the same as the corresponding trend pre-
dicted for the plates that are loaded by linearly varying
edge loads.

Generic effects of plate anisotropy. Results are
presented in figures 12 through 16 for simply supported
and clamped plates that are subjected to linearly varying
edge loads. In figures 12 through 16, the ratio of the

anisotropic-plate buckling coefficient K, to the corre-

sponding specially orthotropic-plate buckling coefficient
K b|y— 820 (see figs. 6 through 10) is given for equal val-

ues of the anisotropy parameters (y = 8) ranging from 0.1
to 0.6. In figures 12 and 13, the generic effects of plate
anisotropy on the buckling coefficient ratio are given for
simply supported and clamped plates, respectively, as a
function of the orthotropy parameter B. For each value of
vy = & given in figures 12 and 13, two curves are pre-
sented. The solid and dashed lines correspond to values
of the load distribution parameter €5 = 1 (uniform com-
pression) and €y = —2 (the maximum amount of tension
in the load distributions considered herein), respectively.
In figures 14 through 16, the buckling coefficient ratio is
given as a function of the load distribution parameter &g
for discrete values of the orthotropy parameter f = 3, 1.5,
and 0.5, respectively. The solid and dashed lines in

figures 14 through 16 correspond to results for clamped
and simply supported plates, respectively.

Figures 12 through 16 show that the anisotropic-
plate buckling coefficient is always less than the corre-
sponding orthotropic-plate buckling coefficient for all
values of parameters considered. In addition, these
results predict that the effects of neglecting anisotropy
are typically more pronounced for the simply supported
plates than for the clamped plates, but only by a small
amount. Moreover, for the full range of anisotropy con-
sidered, figures 12 and 13 show a trend of monotonic
increase in the buckling coefficient ratio as the orthot-
ropy parameter [} increases. The results in figures 12
through 16 also predict that the effects of neglecting plate
flexural anisotropy in the buckling analysis of simply
supported plates become slightly less pronounced as the
load distribution parameter g, decreases and the amount
of tension in the edge load distribution increases. More-
over, this effect is practically negligible in the corre-
sponding clamped plates. This behavioral trend, in which
the importance of anisotropy is reduced as the amount of
tension in the edge load distribution increases, is similar
to a behavioral trend given in reference 5. There, the
importance of anisotropy on the buckling load of a plate
that is subjected to destabilizing uniform axial compres-
sion is shown to be reduced as the amount of subcritical
transverse tension load N, that is applied to the plate is
increased. However, for this case, the clamped plates
exhibit more sensitivity to the transverse tension load
than do the simply supported plates.

Results that show the importance of flexural anisot-
ropy on the buckling behavior of shear-loaded simply
supported and clamped plates have been presented in
reference 1 and are presented in figure 17 in a different
form for convenience. In this figure, the ratio of the
anisotropic-plate buckling coefficient K to the corre-

sponding specially orthotropic-plate buckling coefficient

s‘ (see fig. 11) is given as a function of the
orthotropy parameter [ for equal values of the anisotropy
parameters (y = 8) ranging from 0.2 to 0.6. Two groups
of curves that correspond to positive and negative shear
loads are shown in the figure. For each value of y =
given in figure 17, two curves are presented in each
group. The solid and dashed lines correspond to results

for clamped and simply supported plates, respectively.

The results presented in figure 17 for simply sup-
ported and clamped plates that are subjected to positive
shear loads indicate that the anisotropic-plate buckling
coefficient is always less than the corresponding
orthotropic-plate buckling coefficient. However, this
trend is reversed for negative shear loads. The results in
figure 17 also show that the effects of neglecting plate

7



anisotropy become smaller as the orthotropy parameter
increases and the anisotropy parameters y and 8 decrease.
Furthermore, these results show that the effects of
neglecting plate anisotropy are only slightly more pro-
nounced for simply supported plates than for clamped
plates. Comparing the results presented in figures 12, 13,
and 17 indicates that the reductions in buckling coeffi-
cient caused by neglecting anisotropy are, for the most
part, more pronounced for the shear-loaded plates than
for the plates that are subjected to linearly varying edge
loads.

Plates Loaded by Shear and Linearly Varying
Edge Loads

Buckling interaction curves obtained by neglecting
the plate anisotropy in the buckling calculations for sim-
ply supported [+45]; plates that are subjected to uniform
shear and linearly varying edge loads are presented in
figure 18. Negative values of K, indicated on the figure
correspond to results in which the sign of Ny, is reversed,
and negative values of K, correspond to negative shear
loadings. Several curves that indicate the stability bound-
aries corresponding to values of the load distribution
parameter & = -2, —1.5, -1, -0.5, 0, 0.5, and 1 are
presented in figure 18. Each curve shown in the figure
is symmetric about the line K; = 0, and the curve for
€y =—1 (pure in-plane bending) is also symmetric about
the line K, = 0. In addition, all the curves pass through
the same two points on the line K = 0; i.e., the points
that correspond to positive and negative shear buckling.

The curves shown in figure 18 for values of €5 = 0,
0.5, and 1 are open, parabola-like curves that extend
indefinitely in the negative Kj-direction. For these com-
bined loadings, shear loads that are greater in magnitude
than the shear buckling load can be sustained only when
the linearly varying edge loads are tensile loads. In con-
trast, specially orthotropic plates that are subjected to
pure in-plane bending (gg = —1) can never sustain shear
loads that are greater in magnitude than the shear buck-
ling load. However, the curves shown in figure 18 for
€y =-2, —1.5, and ~0.5 are significantly different from
the conventional buckling interaction curves found in the
literature and shown in figure 18 for plates that are sub-
jected to uniform shear and uniform axial compression
(&g = 1) or pure in-plane bending loads. Specifically, the
results predict that shear loads that are larger in magni-
tude than the shear buckling load can be supported by an
unbuckled plate when a tension-dominated linearly vary-
ing edge load distribution is applied to the plate first. It is
important to observe that the loading with g5 = —0.5 is
tension dominated for negative values of X, but not for
positive values. In general, when trying to determine
whether a linearly varying edge load is tension domi-
nated, both positive and negative values of K, should be

8

considered. The ability to carry shear loads greater in
magnitude than the positive and negative shear buckling
loads is attributed to the fact that the stabilizing effect of
the tension part of the linearly varying edge load is
greater than the destabilizing effect of the compression
part.

Additional buckling interaction curves that corre-
spond to the curves shown in figure 18 are presented in
figure 19 for simply supported [+45]; plates that are sub-
jected to shear and linearly varying edge loads. The
curves shown in figure 19 include the effects of flexural
anisotropy which are manifested by skewing and transla-
tion of the curves presented in figure 18 in the K,-K|
plane. Thus, the results indicate that for a given value of
K, the anisotropic plates can carry a negative shear load
that is much greater in magnitude than the corresponding
positive shear load. Moreover, the results predict that
the anisotropic plates with a tension-dominated linearly
varying edge load distribution (i.e., g =-2,-1.5, and
—0.5) can also support shear loads (positive or negative)
that are larger in magnitude than the shear buckling load
and that this effect is much more pronounced for plates
that are loaded in negative shear. This greater negative-
shear load capacity for the plates is attributed to the
greater shear buckling resistance of these plates under
negative shear loads. That is, flexurally anisotropic plates
generally exhibit two unequal plate bending stiffnesses
along the directions of the diagonal compression and ten-
sion generated by the shear load. For a negative shear
load, the higher plate bending stiffness acts in the direc-
tion of the diagonal compression generated by the load.

The importance of neglecting anisotropy in the cal-
culation of buckling interaction curves for simply sup-
ported [10], plates that are loaded by shear and a
tension-dominated linearly varying edge load distribu-
tion (g = -2) is indicated in figure 20. Curves are shown
in this figure for values of 6 = 30°, 45°, and 60°. The
solid and dashed lines are buckling interaction curves in
which the plate anisotropy is neglected (specially ortho-
tropic) and included, respectively. Figure 20 indicates
that the specially orthotropic plates with 8 = 45° have
larger (in magnitude) buckling coefficients than the cor-
responding plates with 8 = 30° and 60°. Moreover, the
buckling interaction curves for the specially orthotropic
plates with 8 = 30° and 60° are identical. For the aniso-
tropic plates, however, these two trends are not valid.
That is, the buckling coefficients for the anisotropic
plates with @ = 45° are not always larger in magnitude
than the buckling coefficients for the corresponding
plates with 6 = 30° and 60°. Moreover, the buckling
interaction curves for the anisotropic plates with 8 = 30°
and 60° are different. The results also predict the capabil-
ity of carrying shear loads that are greater in magnitude
than the shear buckling loads (positive and negative) for



all the specially orthotropic and anisotropic plates
considered.

Generic effects of plate orthotropy. Generic buck-
ling interaction curves for specially orthotropic (Y =
6 = 0) simply supported plates that have a value of § =3
and that are subjected to shear and linearly varying edge
loads are presented in figure 21. In particular, several
curves that indicate the stability boundaries that
correspond to values of the load distribution parameter
gg=-2,-1.5,-1,-05,0,0.5, and 1 are presented in the
figure. The generic buckling interaction curves shown in
figure 21 exhibit the same characteristics as the corre-
sponding curves presented in figure 18 for the [+45];
plates in which the effects of anisotropy are neglected.
That is, each curve shown in the figure is symmetric

about the line given by a zero value of K |Y‘ 620’ and the

curve for €5 = —1 (pure in-plane bending) is also symmet-
ric about the line given by a zero value of K b‘y— 520" In

addition, all the curves pass through the same two points
on the line given by a zero value of K b‘y_ 520’ ie., the

points that correspond to positive and negative shear
buckling. Like the results presented in figure 18 for the
[+45]; plates, the generic curves shown in figure 21

for values of g5 = 0, 0.5, and 1 are open, parabola-
like curves that extend indefinitely in the negative
K bly- S_O—direction. Thus, for these three loadings, shear

loads that are greater in magnitude than the shear buck-
ling load can be sustained only when the linearly varying
edge loads are tensile loads. However, the plates that are
subjected to pure in-plane bending (¢ = —1) can never
sustain shear loads greater in magnitude than the shear
buckling load. Furthermore, the generic results also pre-
dict an ability to carry shear loads that are larger in mag-
nitude than the corresponding shear buckling load for
plate loadings with g5 = -2, —1.5, and —0.5 (i.e., tension-
dominated load distributions). This ability to carry shear
loads greater in magnitude than the positive and negative
shear buckling loads is again attributed to the fact that
the stabilizing effect of the tension part of the linearly
varying edge load is greater than the destabilizing effect
of the compression part.

Generic buckling interaction design curves for spe-
cially orthotropic (y=56=0) simply supported and clamped
plates that are subjected to shear and linearly varying
edge loads are presented in figures 22 through 28 for val-
ues of gg = -2, -1.5, -1, 0.5, 0, 0.5, and 1, respectively.
The solid lines and dashed lines in the figures correspond
to results for clamped and simply supported plates,
respectively, and curves are given for values of the

orthotropy parameter f = 0.5, 1, 1.5, 2, 2.5, and 3. More-
over, curves are shown for positive shear loading only.
Results for negative shear loading are obtained by noting
that buckling interaction curves for specially orthotropic
plates that are loaded by shear are symmetric about the

K -axis. Points on the curves correspond to
b Y:S:O

constant values of the stiffness-weighted load ratio

1/4
Ivbl 1)22 . .
—=| , as illustrated in figure 29 by the line
}vxyl l)ll

emanating from the origin of the plot. An important char-
acteristic of all the buckling interaction curves presented
in figures 22 through 28 is that, for a given stiffness-
weighted load ratio, the magnitude of the buckling coef-
ficients increases substantially as the orthotropy parame-
ter P increases.

The results presented in figure 22 for the plates with
gy = —2 indicate that the maximum value of K SI‘Y

=8=0
N b1 D 22 1
occurs within the range 2.86 < — | <444 and
xyl 11
N bl D 22 " .
3.00< N D <4.13 for the simply supported

xyI\"11

and clamped plates, respectively, as the orthotropy
parameter [} increases from 0.5 to 3.0. Similarly, the
results presented in figure 23 for the plates with gy = 1.5

indicate that the maximum value of K 5’7—8—0 occurs
1/4
. Npi (P
within the range 2.64< N D £397 and
xyl 11

2.58<

N D 174
bl 22 .
—=| <£3.64 for the simply supported
xyl 11

and clamped plates, respectively. Moreover, the results
presented in figure 25 for the plates with g5 = —0.5

indicate that the maximum value of K Sly-B-O occurs

N D 1/4
"'[ 22] < -5.72 and

within the range -8.88< —
ﬁvxyl 1)11

-8.31<

N D 1/4
b1 22 .
N [—] < -6.00 for the simply supported

xyl 11
and clamped plates, respectively. Furthermore, the
results presented in figure 24 for the plates with g5 = -1

indicate that the maximum value of K "y—s—o occurs

when K, =80 =0.

The results presented in figures 24, 26, 27, and 28
for the plates with €5 =-1, 0, 0.5, and 1, respectively, in-
dicate that the buckling interaction curves for the simply

9



supported plates generally have more curvature than the
curves for the corresponding clamped plates. Thus, the
simply supported plates are generally more sensitive to
variations in the stiffness-weighted load ratio.

Generic effects of plate anisotropy. Generic buck-
ling interaction curves for simply supported anisotropic
plates with B = 3 and Y= 8 = 0.6 that are subjected to
shear and linearly varying edge loads are presented in
figure 30. More specifically, curves that indicate the sta-
bility boundaries for g5 = -2, -1.5, -1, -0.5, 0, 0.5, and 1
are presented. The generic buckling interaction curves
shown in figure 30 exhibit the same characteristics as the
curves presented in figure 19 for the corresponding
[£45]; anisotropic plates (these plates have B = 2.28 and
Y= 06 =0.517). That is, the effects of anisotropy are man-
ifested by skewing and translation in the K,-K; plane of
the curves for the corresponding specially orthotropic
plates presented in figure 21. Thus, as was seen for the
[(+45]; anisotropic plates, the generic results for the
anisotropic plates also predict that, for a given value of
Kp, negative shear loads can be carried that are much
greater in magnitude than the corresponding positive
shear load. Moreover, the anisotropic plates with tension-
dominated axial-edge load distributions (gg = -2, —1.5,
and —0.5) can also support shear loads that are larger in
magnitude than the shear buckling load. This effect is
much more pronounced for plates that are loaded by neg-
ative shear. This difference in behavior exhibited by
anisotropic and specially orthotropic plates loaded by
negative and positive shear is attributed to directional
dependence of the shear buckling resistance of anisotro-
pic plates previously described herein.

Buckling interaction curves that show the generic
effects of plate anisotropy are presented in figure 31 for
simply supported and clamped plates with B = 3 that are
subjected to shear and a linearly varying edge load corre-
sponding to €y = —2 (tension dominated). Several curves
that indicate the stability boundaries for equal values of
the anisotropy parameters (y = 8) ranging from 0 to 0.6
are shown in the figure. The solid and dashed lines in fig-
ure 31 correspond to results for clamped and simply sup-
ported plates, respectively. These results indicate that the
curve corresponding to a specially orthotropic plate
(Y= 8 = 0) becomes more skewed and is translated more
in the negative K-direction as the values of the anisot-
ropy parameters increase. These effects of anisotropy
appear to be nearly the same for the clamped and simply
supported plates.

The results presented in figure 31 also show that
for some values of the stiffness-weighted load ratio
Nbl [D22

1/14
——| , the buckling interaction curves for plates
N D,

xyl

10

withy=0=0 and y = 80 intersect. Thus, for these
values of the stiffness-weighted load ratio, neglecting
anisotropy has no effect on the critical value of the

loading parameter p_. (see eqgs. (18) through (21)).

Moreover, the results indicate that as the stiffness-
weighted load ratio varies, so does the importance of
the plate anisotropy. An indication of the importance of
plate anisotropy, with respect to the stiffness-weighted
load ratio, is obtained by introducing the angle that
the line emanating from the origin of the buckling
interaction curve plot shown in figure 29 makes with
the K -axis as an independent variable. This angle is
referred to herein as the stiffness-weighted load
ratio angle and is denoted by the symbol W. Then, for
a given stiffness-weighted load ratio (constant value
of ¥), the importance of anisotropy on the buckling

pCl’

coefficients is expressed by the ratio = where
cr 'Y=8=0
Per _ K b _ K s
= =% =
pcr ’Y:S:O b 'Y:S:O § Y=6=0

Results are presented in figure 32 that show the
importance of plate anisotropy on the buckling behavior
of simply supported and clamped plates with B = 3 that
are subjected to shear and a linearly varying edge load
corresponding to £y = —2. The results for the simply sup-
ported plates with y = 8 = 0.6 correspond to those pre-
sented in figure 30. Curves that indicate the buckling

. . p .
coefficient ratio ———— for equal values of the anisot-

Pcr|Y= 520

ropy parameters (y = 8) ranging from O to 0.6 are shown
in figure 32 as a function of the stiffness-weighted load
ratio angle . The solid and dashed lines in the figure
correspond to results for clamped and simply supported
plates, respectively. The results presented in the figure
show a variation in the buckling coefficient ratio of
approximately +0.5, with the greatest variations occur-
ring at values of 0° < ¥ < 70°, 100° < ¥ < 200°, and 290°
< ¥ < 360° Moreover, the results indicate that the
importance of plate anisotropy is only slightly more pro-
nounced for the simply supported plates than for the
clamped plates.

Concluding Remarks

A parametric study of the buckling behavior of infi-
nitely long symmetrically laminated anisotropic plates
that are subjected to linearly varying edge loads, uniform
shear loads, or combinations of these loads has been pre-
sented. A special purpose nondimensional analysis that is
well suited for parametric studies of clamped and simply



supported plates has been described, and its main
features have been discussed. The results presented
herein have focused on the effects of the shape of the lin-
early varying edge load distribution, plate flexural
orthotropy, and plate flexural anisotropy on the buckling
behavior. In addition, results have been presented that
focus on the interaction of linearly varying edge loads
and uniform shear loads with plate flexural anisotropy
and orthotropy. In particular, results have been presented
for [+0], thin graphite-epoxy laminates that are represen-
tative of spacecraft structural components. Also, numer-
ous generic buckling results have been presented that are
applicable to a broad class of laminate constructions that
show explicitly the effects of flexural orthotropy and
flexural anisotropy on plate buckling behavior under
these combined loads. These generic results can be used
to extend the capability of existing design guides for
plate buckling.

An important finding of the present study is that
the buckling coefficients increase significantly as the
Dy + 2D

12
(Dy1Dyy)

as the load distribution parameter €&, decreases (the

orthotropy parameter P = increases or

loading distribution becomes tension dominated). In
contrast, the buckling coefficients decrease significantly

D
as the anisotropy parameters Y = —3372 and
(D1 Dpa)
D, . .
8 = — = — with equal values (y= 9) increase, for
3 1/4
(Dy,D3)

all linearly varying edge loads considered and for the
plates that are subjected to positive shear loads. For neg-
ative shear loads, the trend is generally reversed. The
effect of linearly varying edge load distribution shape
(determined by €p) on the importance of plate anisotropy
is generally small, with uniform compression-loaded
plates exhibiting the largest reductions in buckling resis-
tance. The results presented herein also show that the
effects of plate anisotropy are slightly more pronounced
for simply supported plates than for clamped plates when
the plates are subjected to either linearly varying edge
loads, uniform shear loads, or combinations of these
loads. The most important finding of the present study is
that specially orthotropic and flexurally anisotropic
plates that are subjected to a tension-dominated axial
edge load distribution (e.g., &, = —2, —1.5, and ~0.5) can
support shear loads that are larger in magnitude than the
shear buckling load. This ability to carry a shear load
greater in magnitude than the corresponding shear buck-
ling load is attributed to the fact that the stabilizing effect
of the tension part of the linearly varying edge load is
greater than the destabilizing effect of the compression

part. Moreover, this unusual behavior is much more
pronounced for anisotropic plates than for specially
orthotropic plates that are loaded in negative shear. This
trend is reversed for plates that are loaded in positive
shear. This difference in behavior exhibited by anisotro-
pic plates and specially orthotropic plates loaded by neg-
ative shear and the trend reversal for positive shear loads
is attributed to directional dependence of the shear buck-
ling resistance of anisotropic plates.

NASA Langley Research Center
Hampton, VA 23681-2199
January 27, 1997
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Figure 1. Loading systems and sign convention for positive-valued stress resultants (g4 > €, > 0 shown above).
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